Heart muscle patches: Reprogrammed blood cells might extend life of heart attack victims

heart
Image credit: Africa Studio

Those who survive [a heart attack] are often left with permanent heart failure – a group which includes approximately 450,000 people in the UK. Within the five years following an attack, 50% of them will no longer be alive. “Eventually their hearts become so weak that they can’t sustain sufficient blood flow and they just stop altogether,” says Sanjay Sinha, a cardiologist at Addenbrooke’s Hospital, Cambridge.

But even within the next five years, regenerative medicine may provide a radical new alternative: growing live, beating ‘heart patches’.

These tiny, beating pieces of heart muscle, each less than 2.5 sq centimetres (0.5 square inches) in area and half a centimetre thick, are made in small dishes in the lab. Grown over the course of a month, the patches are made by taking blood cells and reprogramming them into a particular form of stem cell which can be converted into any cell in the human body – in this case heart muscle cells, blood vessel cells, and the epicardium, the membrane around the heart which gives it its shape. These clusters of heart cells are then grown in a special scaffold which organises and aligns them into a formation resembling real heart tissue.

Sinha is currently preparing to trial the patches, first in mice and then pigs. If all goes to plan, in five years he may be ready to conduct a first human trial.

Read full, original post: Can we bring hearts back from the dead? 

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.